Recurring Slope Lineae: Mobility Systems Analysis

IEEE Aerospace Conference 03/09/2018

Gareth Meirion-Griffith¹, Issa Nesnas¹, Laura Kerber¹, Bob Anderson¹, Travis Brown¹, Fred Calef¹, Joel Burdick², Melissa Tanner²

¹Jet Propulsion Laboratory, California Institute of Technology ²California Institute of Technology

Outline

Understanding RSL

Jet Propulsion Laboratory

Recurring Slope Lineae - Mobility Systems

Definition:

- Recurring Slope Lineae, RSL, are visible streaks observed on the faces of *some* craters and other steep landforms.
 - Occur periodically 1.
 - Lengthen as a function of time
 - 3. Fade
- Dry flows, triggered by dust devils, impacts, or seismic events are not RSL

Provenance Hypotheses:

- Dry Flow
- 2. Volatile-triggered Dry Flow
 - CO₂ triggered
 - b) H₂O triggered
- 3. Wet Flow
 - Deliquescence (salts absorb atmospheric water) a)
 - b) Shallow source (e.g. melting of near-surface ice)
 - Deep source (e.g. ground water release from aquifer) C)

Dry Flow

Volatile-triggered Dry Flow

Wet Flow

Disambiguation of Hypotheses: Strategy

Jet Propulsion Laboratory

Identification of Promising Sites

Jet Propulsion Laboratory

Study Focus Craters

Principal Mobility Challenges: Roughness and Slope

Jet Propulsion Laboratory

Recurring Slope Lineae - Mobility Systems

Blue≤ 9 degrees

10 degrees ≤ Green≤ 18 degrees

19 degrees ≤ Yellow≤ 27 degrees

27 degrees ≤ Orange≤ 36 degrees

Red ≥ 36 degrees

Fig: Boulder field. Square shows approximate footprint of Curiosity rover

Video: Video created in JPL WebGIS tool using 25 cm/p HiRISE imagery. DEM created at \sim 1 m/p. Shows: Ascent of crater rim, descent into crater over \sim 1 km traverse distance

Mobility System Categories

NASA Jet Propulsion Laboratory

Approximately 30 concepts of operations (CONOPS) considered that broadly fit into the following 6 categories:

- A. Ground Ascent (crater only)
- B. Ground Descent (rim only)
- C. Balloon (Not discussed; feasible)
- D. Helicopter (both crater and rim)
 - E. Missile (both crater and rim)
- F. Tether Riders (Not discussed; likely infeasible)

Ground Ascent

NASA

Jet Propulsion Laboratory

Recurring Slope Lineae – Mobility Systems

Pros	Cons
 Provides good vantage Heritage (higher starting TRL) Large payload carrying capacity Multiple measurement locations 	 Terrain-dependent mobility system design Terrain properties uncertainty Slip, entrenchment, static stability risks Moderate risk of altering measurement site (avalanche)

Technologies/techniques considered

- 1. Wheeled
- 2. Tracked
- 3. Climbing (limbed, gecko grippers)
- 4. Walking
- 5. Push-roll
- 6. Variable normal force (air assisted)
- 7. Hopping
- 8. Electrostatic adhesion

Sand-filled crater floor. Ripples and dunes present.

Boulder fields

Unconsolidated granular media

Jet Propulsion Laboratory

Recurring Slope Lineae - Mobility Systems

Rule of Thumb:

The slope a vehicle can ascend may be approximated as the arctangent of its Drawbar Pull Coefficient:

$$\theta = \tan^{-1}(DPC)$$

A 35° slope would require a DPC of 0.7, approximately 3X that of MSL/MER/M2020 at 20% slip

Rim Descent

Jet Propulsion Laboratory

Pros	Cons
 Controlled descent with precise placement Capable of carrying high-mass payloads Multi-site measurements enabled Reduced terrain-dependence and risk 	Tether management on rough terrain Somewhat reduced viewshed prior to entry

Typical Crater rim roughness with challenges to tether management

Jet Propulsion Laboratory

Pros	Cons
 Lower complexity (fewer assets) than rover-based delivery option Reduces control concerns during close approach to crater wall Provides improved view-shed prior to aerial deployment 	 Helicopter scaling on Mars is not well understood Control of helicopter + pendulum dynamics Up to 8 km flight each way from lander on a single charge Large mass and diameter for helicopter Longer longer tether for payload deployment Tether and winching mechanism mass reduces payload capacity

Missiles

NASA Jet Propulsion Laboratory

Pros	Cons
 Obviates need to scale crater wall Rapid approach Less subject to weather events (wind) 	 Significant disruption of measurement site High loads on payload and subsystems Assumes <i>a-priori</i> knowledge of surface strength Requires consumables Accuracy may be limited

Contribution	DV [m/s]
Ascent	15
Boost	200
Brake	195
Hover (15 s)	55.5
Flyaway	50
Total nominal	515.5
Control	155
Total	670

3000			Ascent	
도 2000	MECO, ~170 m/s,		Boost Coast Brake	
ude A(t = 13 s	Apoapse altitude 2.36 km	Second ignition, ~160 m/s,	Flyaway
9001 Hit	Ascent to ~ 3m		t = 70 s Vertical thrust zero velocity, t = 80 s	
0	1000 2000	3000 4000 500		000
Downrange, m				

Component	Mass [kg]
Payload	20.0
Avionics	10.0
Structure	10.0
Propulsive dry	14.7
Prop dry margin	3.7
Propellant	19.4
Pressurant	0.4
GIOM	78.2

Concept Rankings

Acknowledgements and POC

Jet Propulsion Laboratory

- Science: David Stillman (SwRI), Jay Dickson (Caltech), Colin Dundas (USGS)
- Engineering: Wayne Johnson (ARC), Larry Young (ARC), Soon-Jo Kim (Caltech), David Rosing (JPL), Joel Benito (JPL), Ashley Karp (JPL)

- POC:
 - Gareth Meirion-Griffith, garethm@jpl.nasa.gov
 - Issa Nesnas, PI, issa.a.nesnas@jpl.nasa.gov